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ABSTRACT: The High-Resolution Rapid Refresh Ensemble (HRRRE) is a 36-member ensemble analysis system with 9

forecast members that utilizes the Advanced Research version of the Weather Research and Forecasting (ARW-WRF)

dynamic core and the physics suite from the operational Rapid Refresh/High-Resolution Rapid Refresh deterministic

modeling system. A goal of HRRRE development is a system with sufficient spread among members, comparable in

magnitude to the random error in the ensemblemean, to represent the range of possible future atmospheric states. HRRRE

member diversity has traditionally been obtained by perturbing the initial and lateral boundary conditions of each member,

but recent development has focused on implementing stochastic approaches in HRRRE to generate additional spread.

These techniques were tested in retrospective experiments and in the May 2019 Hazardous Weather Testbed Spring

Experiment (HWT-SE). Results show a 6%–25% increase in the ensemble spread in 2-m temperature, 2-m mixing ratio,

and 10-m wind speed when stochastic parameter perturbations are used in HRRRE (HRRRE-SPP). Case studies from

HWT-SE demonstrate that HRRRE-SPP performed similar to or better than the operational High-Resolution Ensemble

Forecast system, version 2 (HREFv2), and the nonstochastic HRRRE.However, subjective evaluations provided byHWT-

SE forecasters indicated that overall, HRRRE-SPP predicted lower probabilities of severe weather (using updraft helicity

as a proxy) compared to HREFv2. A statistical analysis of the performance of HRRRE-SPP and HREFv2 from the 2019

summer convective season supports this claim, but also demonstrates that the two systems have similar reliability for

prediction of severe weather using updraft helicity.

KEYWORDS: Severe storms; Ensembles; Forecast verification/skill; Numerical weather prediction/forecasting;

Parameterization

1. Introduction

All weather forecasts are characterized by some degree of in-

herent uncertainty (AMS 2002; NRC 2003). These uncertainties

arise both from an incomplete picture of the initial state of the

atmosphere (a chaotic system; Lorenz 1963) and an imperfect

representation of the physical processes that govern various at-

mospheric phenomena in numerical weather prediction models

(Stensrud et al. 2000; NRC 2006; Teixeira and Reynolds 2008).

Many of these processes, including atmospheric turbulence and

the interactions between individual hydrometeors, must be pa-

rameterized at the spatial scales of high-resolution operational

weather prediction models (Dx ; 3km; Dz ; 100m). Modern

weather forecasts increasingly attempt to account for these sour-

ces of uncertainty. As a result, today’s predictions are often

probabilistic (e.g., there is a 10% chance of a tornado within 25

miles of a point in central Oklahoma today) rather than deter-

ministic (e.g., there will be a tornado in central Oklahoma today).

In recent years, model ensembles have become a valuable

tool in our attempts to quantify this forecast uncertainty (Leith

1974; Grimit andMass 2002; Keune et al. 2014). Themakeup of

individual ensemble systems varies widely. Each member can

be identical except for small changes in the initial and/or

boundary conditions provided to the forecast model (e.g.,

Molteni et al. 1996; Hamill and Colucci 1997), or the ensemble

members can be completely different models with different

physics schemes or even different dynamic cores (AMS 2002).

One measure of the success of an ensemble is its reliability –

whether an event forecasted by a given fraction of the en-

semble members actually occurs, on average, that fraction of

the time. A related desired characteristic of an ensemble is that

the spread of the different member solutions (i.e., uncertainty)

is comparable to the error of the ensemble mean. If the spread

does not at least match the model error, then the ensemble

underestimates the degree of uncertainty in the forecast and is

said to be underdispersive. Unfortunately, this has been the

state of ensemble forecasting for many years throughout the

world (Berner et al. 2017).

Historically, multiphysics, multidynamics ensembles have

come closest to achieving a spread that matches the error.

These ensembles typically produce a large diversity of forecast

solutions across the different members that comprise the en-

semble, which leads to sufficient spread and improved proba-

bilistic forecasts (e.g., Hacker et al. 2011; Berner et al. 2011,

2015).One prominent example of amultiphysics, multidynamics

ensemble is version 2 of the operational High-Resolution
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Ensemble Forecast (HREFv2; Roberts et al. 2019) system de-

signed and run by the National Centers for Environmental

Prediction (NCEP). HREFv2 consists of eight members that

contain a mixture of dynamics and physics schemes, four of

which are 12-h time-lagged versions of the other four. Clark et al.

(2019) state that ‘‘the diversity in HREFv2 has proven to be a

very effective configuration strategy, and it has consistently

outperformed all other [convection-allowing model] ensembles

examined in the [Hazardous Weather Testbed] (HWT) during

the last few years.’’ However, multiphysics, multidynamics en-

sembles are difficult to maintain and develop, since each en-

semble member has a completely different design. Performing

statistical postprocessing on such an ensemble is complicated by

the fact that each member has a different climatology and a

different set of error characteristics. These differences contrib-

ute to a sufficiently large ensemble spread1 (Eckel and Mass

2005; Berner et al. 2015), but at the cost of each member’s raw

forecast not representing an equally likely outcome. In addition,

if the biases in the individual ensemble members are removed,

the spread in the model solutions generally collapses (Eckel and

Mass 2005; Berner et al. 2015). The spread, in other words, is not

being produced for the right reasons, but is instead a product of

model biases.

To address these issues, an alternative ensemble system, the

nonoperational High-Resolution Rapid Refresh Ensemble

(HRRRE), was designed at NOAA’sGlobal Systems Laboratory

in 2016.UnlikeHREFv2, the nine-memberHRRREuses a single

dynamic core (the Advanced Research version of the Weather

Research and Forecasting core; ARW-WRF) and a single physics

suite. Until spring 2019, differences between ensemble members

were driven entirely by initial and boundary condition perturba-

tions.While easier tomaintainwith a smaller ensemblemeanbias,

HRRREhas suffered substantially more underdispersion relative

to HREFv2.

Going forward, NCEP’s goal is to adopt an ensemble system

that utilizes a single atmospheric dynamic core [i.e., the Finite-

Volume Cubed-Sphere dynamic core (FV3); Harris and Lin

(2013) and references therein] and, potentially, a single at-

mospheric physics suite. An obvious challenge is to design an

ensemble system that produces a comparable spread-error

ratio to HREFv2 with substantially less diversity in the design

of the different ensemble members. The remainder of this ar-

ticle describes current research efforts to accomplish this goal

using HRRRE.

2. HRRRE design

The experimental HRRREhas two components: a 36-member

ensemble-analysis system (HRRR Data Assimilation System, or

HRRRDAS) and a 9-member ensemble forecast system. An

outer domainwith 15-kmhorizontal grid spacing (Fig. 1) exists for

the purpose of adding random perturbations to the zonal and

meridional winds, temperature, water vapor mixing ratio, and

column dry air mass near the lateral boundaries of each ensemble

member. The inner domain covers the contiguous United States

with convection-allowing, 3-km horizontal grid spacing, as in the

deterministic HRRR system. The physics schemes used in

HRRRE are described by Benjamin et al. (2016) and Olson

et al. (2019).

While there are advantages to cycling an ensemble analysis

system continuously (Schwartz et al. 2019), the HRRRDAS

instead uses a strategy of reinitializing members at regular

intervals from parent models. This strategy has been used

throughout the history of the RAP and HRRR systems

(Benjamin et al. 2016). HRRRDAS members are initialized

twice per day, at 0900 and 2100 UTC. RAP atmosphere and

HRRR soil analyses at these times provide the initial ensemble

mean for the HRRRDAS. The atmospheric states in the

FIG. 1. The HRRRE domain configuration, which consists of a parent domain with 15-km

horizontal grid spacing and a CONUS-scale nest with 3-km horizontal grid spacing. Terrain

height (m) is shaded.

1 In this paper, the ensemble spread is defined as the standard

deviation of a given variable of interest.
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36HRRRDAS members are created by adding perturbations

from the first 36 members of the Global Data Assimilation

System (GDAS; Parrish and Derber 1992; Derber and Wu

1998; NCEP 2004) to the RAP analysis. The land surface states

are perturbed with SPP, as described in the appendix.

The HRRRDAS is cycled hourly, using an ensemble Kalman

filter to assimilate conventional and radar-reflectivity ob-

servations. Nonvariational cloud clearing, based on satel-

lite and radar observations, is also applied hourly to

members individually, as in the RAP and HRRR systems

(Benjamin et al. 2016). Relaxation to prior spread (RTPS;

Whitaker and Hamill 2012) helps maintain ensemble spread

during the hourly cycling. At times determined by testbeds

(typically 0000 and 1200 UTC), the first 9 members of the

HRRRDAS are advanced as a free forecast, out to lead times

as much as 36 h. The other 27 HRRRDAS members do not

participate in the free forecast due to computer resource con-

straints and the desire to produce a forecast ensemble that is

similar in size to HREFv2. The 9-member HRRRE forecasts

are the focus of the current study.

3. Stochastic physics in HRRRE

Beginning in late 2017, a variety of stochastic approaches

were added to HRRRE and investigated. These techniques

represent another way (beyond simply perturbing initial and

lateral boundary conditions) to increase spread in a single-

dynamic core, single-physics ensemble (e.g., Palmer 2001;

Jankov et al. 2017). One clear advantage of this approach is a

statistically consistent ensemble distribution (e.g., Bowler

et al. 2009; Berner et al. 2009; Sanchez et al. 2015). The sto-

chastic approaches considered for HRRRE were stochastic

perturbations of physics tendencies (SPPT; Buizza et al. 1999,

Palmer et al. 2009), stochastic kinetic energy backscatter

(SKEB; Berner et al. 2009, 2012, 2015), and stochastic pa-

rameter perturbations (SPP). In SKEB, model uncertainty

associated with subgrid-scale processes is addressed by ran-

domly perturbing streamfunction and potential temperature

tendencies (Berner et al. 2009, 2012, 2015). In contrast, SPPT

(Palmer et al. 2009) considers the subgrid-scale process un-

certainty by perturbing the total physics tendencies for fields

such as temperature, humidity, and wind (Bouttier et al. 2012;

Berner et al. 2015). The inclusion of SPPT and SKEB in the

ECMWF ensemble improved probabilistic skill by reducing

the ensemble mean error and by improving reliability over

much of the examined 30-day forecast period (Leutbecher

et al. 2017).

The main criticism of SKEB and SPPT is that they are ap-

plied in an ad hoc manner, rather than by developing and

implementing them within the physics schemes to address

uncertainty at its source. A third stochastic approach, SPP,

targets this shortcoming. SPP is implemented by modifying

select (typically uncertain) physical parameters or variables

with perturbations that are either fixed in time and/or space

(Hacker et al. 2011) or that evolve according to chosen de-

correlation time and/or length scales (Bowler et al. 2009;

Ollinaho et al. 2017; Jankov et al. 2017; Jankov et al. 2019).

Unlike the SPPT and SKEB techniques, SPP directly accounts

for uncertainty in individual parameters within the model

physics in a physically consistent manner.

The SPP scheme in HRRRE consists of a random pattern

generator that creates a vertically uniform perturbation

field with prescribed spatiotemporal correlations that can be

applied to two-dimensional (using the first level in the per-

turbation field) and three-dimensional fields. The pertur-

bations are applied to key parameters or variables in

multiple parameterization schemes. Parameters, variables,

and diagnostics within the boundary layer, surface layer,

gravity wave drag, radiation, microphysics, and horizontal

diffusion schemes were perturbed in this work. The per-

turbations were also applied to parameters in the land sur-

face model at the initial time, as described in the appendix.

The perturbations were applied to a variety of fields, in-

cluding fixed parameters, diagnostic variables, and prog-

nostic state variables, but the latter were only perturbed at

the initial time to limit the possibility of nonconservation.

All other fields were perturbed continuously during model

integration. The appendix discusses the specific parameters

that were perturbed in each scheme and the rationale for the

design of these perturbations.

Different spatial and temporal length scales for the pertur-

bations were tested. We found that prescribing a correlation

length scale of 150 km and a temporal scale of 6 h provided the

best combination of enhanced ensemble spread without sub-

stantially increasing the error of the ensemble mean. These

scales were then used to construct all of the perturbed fields.

Different perturbation magnitudes were also tested; however,

with a parameter/variable space as large as ours (Table 1), only

approximate optimal magnitudes have been determined thus

far. This testing was typically performed on individual case

studies, with attention to both everyday sensible weather, such

as 2-m temperature and 10-m wind speed, and also to severe

convection/storm structures. The criteria for determining the

optimal values were 1) attempt to generate total spread (i.e.,

ensemble spread plus observation error) in 2-m temperature,

2-m mixing ratio, and 10-m wind speed comparable to the

standard deviation of the differences between the observed

and ensemble-mean forecasted values of those same variables

(after bias removal); 2) attempt to create this ensemble spread

without increasing the random error and bias in the ensemble

mean forecast; 3) maximize the ensemble spread without ex-

cessively perturbing the parameters/variables of interest, which

would be unphysical and might result in computational insta-

bility; and 4) approximately match the size of the perturbations

with the uncertainty in the parameter/variable of interest

(if known).

After extensive testing, it was determined that the magni-

tudes of the perturbations listed in the far-right column of

Table 1 were both computationally stable and provided a

reasonable ensemble spread without increasing the error in the

ensemble mean. We chose to perturb each parameter/variable

by up to two standard deviations, which equates to twice the

magnitude of the values listed in Table 1. We caution the

reader that our choice of perturbation magnitude and sign (i.e.,

correlation to other perturbations) were chosen in the context

of driving ensemble spread for short-term (,24 h) forecast
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applications. This configuration may not be optimal for longer-

term forecast applications.

4. Results from HRRRE retrospective tests

NOAA/GSL scientists conducted several retrospective ex-

periments to examine the behavior of SPP, SKEB, and SPPT in

HRRRE. One of the most important retrospective periods was

16 July–14 August 2018, which offered an opportunity to ex-

amine the model performance during typical summertime

convective weather, when synoptic constraints on sensible

weather were weak and strong daytime vertical mixing was

occurring within the PBL. We also ran a control experiment

(HRRRE-CTRL), with no stochastic physics, to provide

baseline estimates of HRRRE spread and bias under these

conditions. Each set of runs consisted of 18-h forecasts that

were initialized once per day at 1200 UTC. While computer

resources were insufficient to conduct more varied experi-

ments, results from additional seasons and longer lead times

are of interest and may differ from the 0–18-h summer fore-

casts examined below.

a. Impact of SPP on HRRRE total spread, random error,
and mean bias

Figure 2 illustrates the effect of SPP on the HRRRE total

spread, random error, and ensemble-mean bias as a function of

forecast lead time over the eastern United States (results over

the entire United States were similar; not shown). Dowell et al.

(2004) provide more details on how these metrics were calcu-

lated. For all surface variables, the total spread is the same in

the two HRRRE configurations at the initial time, increases in

HRRRE-SPP relative to the baseline by midmorning, reaches

a peak in both configurations in the midafternoon, and then

declines in both configurations (but remains greater in

HRRRE-SPP than in the baseline) after dark. The inclusion

of SPP in HRRRE increases the peak value of the baseline

spread in 2-m air temperature and 2-m mixing ratio from 1.68
to 2.08C (25%; Fig. 2a) and from 1.4 to 1.6 g kg21 (14%;

Fig. 2b), respectively. Gains in spread in the 10-m zonal wind

speed (similar to the impact on the spread of the 10-m wind

speed; not shown) are more modest, with an increase from 1.6

to 1.7m s21 (6%; Fig. 2c), but evolve similarly during the

simulation. While the increases in total spread are not large,

they result in a spread that roughly matches the random error

present in HRRRE-SPP (blue lines in Fig. 2), a goal of en-

semble design. The strong diurnal cycle in the ensemble

spread is due to the dominant effect of the PBL perturbations,

which are coupled to perturbations in the shortwave radiation

scheme. PBL and shortwave radiation processes are greatly

reduced or nonexistent at night, leading to a loss of ensemble

spread after sunset. The addition of SPP to HRRRE slightly

improves the mean bias in 2-m mixing ratio and 10-m wind

speed, but has a mixed impact on the 2-m temperature bias

(red lines in Fig. 2).

b. Impact of SPP onHRRRE quantitative precipitation and
surrogate severe weather forecasts

To determine how SPP affects the precipitation and severe

weather forecasts produced by the ensemble, HRRRE-CTRL

and HRRRE-SPP surrogate severe and probabilistic quanti-

tative precipitation forecasts (PQPF) from the retrospective

experiment were evaluated. Thirty time-matched forecasts

were compared to NCEP Stage-IV quantitative precipitation

estimates, following budget interpolation (Accadia et al. 2003)

of the Stage-IV (4.7-km grid spacing) values to the 3-km

HRRRE grid. Grid points over water and/or those with miss-

ing values in the Stage-IV dataset were excluded from the

analysis. Probabilistic forecasts depict the chance of exceeding

a threshold within a 40-km (13-gridpoint) radius. Neighborhood

probabilities were preferred for this analysis due to the inherently

TABLE 1. List of stochastically perturbed fields, the parameterization schemes they belong to, and information on how the field was

perturbed spatially, temporally, and in magnitude.

Field

Host parameterization

scheme Field type

Spatial

decorrelation

length

scale (km)

Temporal

scale

(hours)

Percent

magnitude

perturbation (for

one std dev)

KH and KM MYNN-EDMF Diagnostic 150 6 630%

Background qy MYNN-EDMF Diagnostic 150 6 610%

Entrainment rate MYNN-EDMF Diagnostic 150 6 610%

sH GWD scheme Fixed parameter 150 6 615%

rec and rei RRTMG radiation scheme Diagnostic 150 6 620%

cs Horizontal diffusion scheme Fixed parameter 150 6 150%, 225%

zt and zq MYNN surface layer scheme Diagnostic 150 6 610%

z0 MYNN surface layer scheme Diagnostic 150 6 620%

Surface emissivity RUC LSM Fixed parameter 150 6 62%

Surface albedo RUC LSM Fixed parameter 150 6 68%

Soil moisture RUC LSM Prognostic state variable 150 6 630%

Vegetation fraction RUC LSM Fixed parameter 150 6 66.6%

Graupel intercept parameter Thompson Diagnostic 150 6 178%, 244%

Cloud droplet shape parameter Thompson Diagnostic 150 6 61.0 (absolute)

w used in CCN activation Thompson Diagnostic 150 6 15% 3 w21, 0%

IN concentration Thompson Diagnostic 150 6 115%, 0%
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discontinuous nature of short-duration (6-h) precipitation accu-

mulations. A Gaussian filter (width 5 25km; 8 3 8 grid points)

was applied to the neighborhood probability fields to smooth

unphysically sharp gradients. The choice of neighborhood size and

filter width are likely to have some impact on the results that

follow, but quantifying this effect is left to futurework. In addition,

although it is possible and often appropriate to perform bias

correction prior to analysis of probabilistic forecast reliability, the

authors find that ensemble PQPF products are not bias corrected

in most operational and testbed settings, and thus this initial in-

vestigation seeks to verify ensemble output in the specific manner

in which it is applied in the forecast process.

FIG. 3. Verification of HRRRE-CTRL (blue) and HRRRE-SPP (green) probabilistic quantitative precipitation forecasts relative to

NCEP Stage-IV quantitative precipitation estimates at the 12–18-h lead time, consisting of (a) frequency bias (forecast/analysis),

(b) fractions skill score with radius5 40 km, and reliability diagrams and forecast histograms for thresholds of (c) 0.1, (d) 0.5, and (e) 1.0 in.

(6 h)21 (1 in. 5 25.4mm).

FIG. 2. Ensemble-mean bias (red lines), random

error (blue lines), and total spread (ensemble

spread plus observation error; green lines) in

HRRRE-SPP (solid lines) and HRRRE-CTRL

(dashed lines) for (a) 2-m air temperature, (b) 2-m

mixing ratio, and (c) 10-m zonal wind speed over

the eastern United States, averaged over 30 fore-

casts initialized at 1200 UTC 16 Jul–14 Aug 2018.
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At 12–18-h lead times, HRRRE-SPP generally produces less

precipitation than HRRRE-CTRL, and the precipitation fore-

casts have a low-frequency bias compared to observations

(Fig. 3a). This bias is especially evident at precipitation thre-

sholds exceeding 1 in. FSS values for the twoensembles are largely

indistinguishable at every threshold (Fig. 3b). Although both

HRRRE-CTRL and HRRRE-SPP exhibit overconfident pre-

cipitation forecasts, HRRRE-SPP reduces this overconfidence

and exhibits improved reliability across all precipitation thre-

sholds (Figs. 3c–e). Compared toHRRRE-CTRL,HRRRE-SPP

produces more forecasts with small to moderate probabilities

(,50%) of exceeding 0.1, 0.5, and 1.0 in. of precipitation within a

40-km radius (Figs. 3c–e). In contrast, the number of high-

confidence forecasts (60%–100% probability) is reduced in

HRRRE-SPP, especially at the 1-in. threshold. The tendency for

HRRRE-SPP to produce lower exceedance probabilities is

likely a consequence of the increased spread of its ensemble

members, since an increase in spread will make it less likely that

two or more ensemble members produce similar forecasts at any

particular grid point. This characteristic has a favorable impact on

reliability, but it worsens the low bias in precipitation forecasts

that was already present in HRRRE-CTRL for areas of heavy

(.1.0 in.) precipitation. The above results are similar for other

6-hr accumulation intervals (not shown).

In addition to PQPF verification, updraft helicity (UH)

forecasts were also evaluated from both ensembles over the

16 July–14 August 2018 period to determine if SPP affects the

ability of HRRRE to anticipate the occurrence of severe

convection. These ‘‘surrogate severe’’ forecasts and the veri-

fication dataset were constructed following the Sobash et al.

(2016) method. Verification statistics were calculated using an

80-km grid, where any exceedance of a forecast threshold in a

given grid box was considered a forecast of severe convection,

and any local storm report [e.g., tornadoes, hail $ 25mm in

diameter, and/or wind gusts $ 50 kt (25.7m s21)] in a grid box

was considered an occurrence of severe convection. Forecasts

of exceeding updraft helicity thresholds from 25 to 150m2 s22

were evaluated, but reliability statistics are only presented for

75m2 s22, both for clarity and because this threshold is com-

monly used in operations. Binary forecast exceedance grids

were smoothed using a Gaussian kernel of 120-km width. As in

the PQPF evaluation, an emphasis was placed on verifying

ensemble forecasts as they are typically used in operational

settings (e.g., using empirically derived exceedance and smooth-

ing thresholds, and without bias correction).

Both HRRRE-CTRL and HRRRE-SPP exhibit strong re-

liability for surrogate severe weather forecasts that utilize

UH $ 75m2 s22 as a threshold (Fig. 4a). Both ensembles tend

to underpredict (by ;5%) the likelihood of severe events that

are relatively low probability (events with an observed fre-

quency of less than 30%), and this tendency is slightly more

pronounced in HRRRE-SPP. For events that occur more fre-

quently (.40%), both ensembles tend to be overly confident in

the event occurrence, but neither ensemble exhibits a clear

advantage in terms of reliability. Regarding the forecast his-

togram (Fig. 4b), the two ensembles produce a similar number

of forecasts that imply an event probability of,30%. Relative

to HRRRE-CTRL, however, HRRRE-SPP is less likely to

forecast higher probabilities (.30%) of UH $ 75m2 s22. This

tendency for HRRRE-SPP to produce fewer higher-confidence

forecasts of severe weather parallels the reduction in confidence

for precipitation forecasts discussed above, and is likely related

to the increased spread of its ensemble members.

c. Impact of SPP on physical realism of the ensemble

One of the key questions that we seek to address by imple-

menting stochastic physics in HRRRE is what stochastic ap-

proach (i.e., SPP, SKEB, or SPPT) increases ensemble spread

in the most physically consistent manner. Constructing joint

probability density function distributions of the spread in two

related model variables in HRRRE-CTRL and comparing

against those from runs with stochastic physics can help to

answer this question. Figure 5 is one example of this approach.

As the spread in the downward shortwave solar radiation at the

surface (SWDOWN) increases from 50 to 150Wm22 in

HRRRE-CTRL (Fig. 5a), there is a modest increase in 2-m T

spread from 0.58 to 0.758C. However, once SWDOWN spread

increases beyond 150Wm22, additional 2-m T spread is gained

at an increasingly rapid rate. This reflects the physical rela-

tionship between cloud fraction and 2-m T, which is nonlinear

and modulated by the mixed-layer depth, and demonstrates

that it is difficult to generate large 2-m T spread without a

correspondingly large spread in cloud amount.

A stochasticized ensemble that preserves this relationship

(among others) is more physically consistent than one that

FIG. 4. Verification of 0–18-h HRRRE-CTRL (blue) and

HRRRE-SPP (green) updraft helicity forecasts against local storm

reports, consisting of the (a) reliability diagram and (b) forecast

histogram for the 75m2 s22 updraft helicity threshold.
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does not. Figure 5b demonstrates that in HRRRE-SPP, the

changes in SWDOWN spread and 2-m T spread relative to

HRRRE-CTRL are positively correlated, with a coefficient of

determination (R2) of 0.23. This is not the case inHRRREwith

SPPT and SKEB (HRRRE-SPPT1 SKEB; Fig. 5c), which did

not include SPP. In HRRRE-SPPT 1 SKEB, there is no ap-

parent relationship between the relative change in SWDOWN

spread and 2-m T spread (R2 5 0.01). While it is not clear that

the relationship between the two should be linear, since Fig. 5a

implies an exponential relationship, SPPT 1 SKEB act to de-

grade the relationship between SWDOWN and 2-m T spread

that is present in HRRRE-CTRL, while HRRRE-SPP comes

closer to maintaining this relationship. This is a direct reflec-

tion of the physical inconsistency of perturbing model ten-

dencies instead of perturbing the uncertain model variables

that impact those tendencies.

5. Results fromHRRRE-SPP in the Hazardous Weather
Testbed and beyond

In recent years, NOAA/GSL has run HRRRE during the

Hazardous Weather Testbed Spring Experiment (HWT-SE),

which is described in detail by Clark et al. (2012). Feedback

from National Weather Service (NWS) forecasters and other

model users in HWT-SE has been incredibly valuable and re-

sulted inHRRRE improvements. The retrospective test results

discussed above led to the implementation ofHRRRE-SPP for

the first time in the 2019 HWT-SE. Collaborators at the

National Severe Storms Laboratory (NSSL) also ran a non-

stochasticized version of HRRRE (HRRRE-CTRL) in par-

allel to facilitate continued comparisons between the two

systems. Graphics from both versions of HRRRE were pro-

duced in real time and uploaded to the HWT-SE website,2

allowing forecasters to analyze ensemble output from both

systems.

Figure 6 provides an example of this comparison for a heavy

rainfall event on 1May 2019 that occurred duringHWT-SE. By

visual inspection, HRRRE-SPP (Fig. 6b) provided an accurate

forecast of this event across the northern half of the observed

heavy rainfall region (hatched area in Fig. 6), although it

struggled to forecast the event in Oklahoma. The HRRRE-

CTRL ensemble (Fig. 6d) also placed high probabilities of

heavy rainfall near the observed area, but its forecast was

generally too far southeast. While HREFv2 (Figs. 6a,c) also

shows the potential for heavy rainfall in the correct location, its

probabilities are much smaller than those of HRRRE (;35%

versus .50%), reflecting a less confident forecast. Figure 7

shows another example of the visual comparisons available to

HWT-SE participants for a severe weather event on 23 May

2019. The ensemble maximum updraft helicity, a quantity that

FIG. 5. Joint probability density func-

tion distributions of the (a) spread in 2-m

air temperature and the spread in down-

welling shortwave radiation at the surface

(SWDOWN) and the change in spread

in 2-m T and SWDOWN relative to

HRRRE-CTRL in (b) HRRRE-SPP and

(c) HRRRE-SPPT1SKEB in a 6-h fore-

cast initialized at 1200 UTC 22 Apr 2017.

Data from overwater grid points have

been excluded.

2 https://hwt.nssl.noaa.gov/sfe_viewer/2019/model_comparisons/.
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is commonly used by forecasters to gauge the spatial extent of a

severe weather outbreak, is shown in color fill, with tornado

and severe hail reports overlaid. For this event, the HREFv2

(Figs. 7a,c), HRRRE-SPP (Fig. 7b), and HRRRE-CTRL

(Fig. 7d) ensembles captured the area of observed severe

weather well. However, except for a small area in Kansas and

Missouri, HRRRE-SPP displays somewhat lower neighbor-

hood probabilities of 24-h maximum 2–5-km updraft helicity

exceeding 75m2 s22 than HREFv2, a point that will be

explored later.

Despite the aforementioned increases in ensemble spread

(Fig. 2) and some individual success stories (e.g., Figs. 6 and 7),

subjective evaluation scores from forecasters during HWT-SE

(Clark et al. 2019; their Fig. 45) suggested similar overall per-

formance between HRRRE-SPP and HRRRE-CTRL. The

median ratings of the two ensemble systems for 0000 UTC

initializations were identical (6 out of a possible 10 points),

while the mean rating for HRRRE-SPP was 0.25 points lower

than that for HRRRE-CTRL. Clark et al. (2019) states that

‘‘subjectively, the impact of stochastic physics appeared to

lower the storm-attribute probabilities (without noticeably

changing the spatial ensemble envelope) by removing/weakening

storms.’’

This feedback, while valuable, was surprising given generally

favorable results from the prior retrospective experiments.

A complicating factor in the diagnosis of HRRRE-SPP

performance during HWT-SE was that the HRRRE and

HRRRDAS configurations changed multiple times during

the course of the experiment, resulting in a nonhomoge-

neous sample of model output. Because ‘‘HREFv2 perfor-

mance is considered the baseline against which potential

future operational [convection-allowing model] ensemble

configurations are compared (Clark et al. 2019),’’ an eval-

uation of HRRRE-SPP performance relative to HREFv2

would help assess the ability of HRRRE-SPP to provide

useful same-day forecast guidance. While the inhomogeneous

nature of the HRRRE-SPP forecasts during HWT-SE made

them ineligible for such an analysis, HRRRE-SPP continued to

FIG. 6. Observations from the Multi-Radar Multi-Sensor (MRMS) network (hatched) and forecast probabilities (color fill) of 6-h

precipitation amount exceeding 1 in. (color fill) from the (a),(c) HREFv2; (b) HRRRE-SPP; and (d) HRRRE-CTRL ensembles at

1200 UTC 1 May 2019. This figure was created from plots available on the HWT-SE website (https://hwt.nssl.noaa.gov/sfe_viewer/2019/

model_comparisons/).
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produce forecasts in real time after HWT-SE ended, and the

forecast output was archived for later analysis.

The aforementioned HRRRE-SPP real-time forecasts in-

cluded a lengthy period of frozen model configuration (1200

UTC 5 June–1200 UTC 31 August 2019). The HRRRE-SPP

and HREFv2 surrogate severe and probabilistic precipitation

forecasts from this period were subsequently evaluated using

the same methods described in section 4b. The HREFv2 and

HRRRE-SPP comparison consisted of 88 time-matched

forecasts initialized at 1200 UTC. Prior to performing the

comparison, the HREFv2 (3–3.2-km native grid spacing,

distributed at 5 km) values were interpolated to the 3-km

HRRRE-SPP grid. At the short lead times examined here,

especially during the first six hours of the forecast, we ac-

knowledge that HRRRE-SPP has a built-in advantage rel-

ative to HREFv2 due to the cycled HRRRDAS, whereas

most of the HREFv2 ensemble members are cold-started.

HRRRE-SPP members generally produce less precipitation

than HREFv2 members for thresholds up to 25mm (6 h)21, as

demonstrated by the significant low-frequency bias in HRRRE-

SPP for nearly all thresholds, and the near-neutral to high-

frequency bias in HREFv2 (Fig. 8a). The low-frequency bias in

HRRRE-SPP is modest at hours 0–6, worsens substantially

at hours 6–12, and improves at hours 18–24. Both ensembles

exhibit the largest biases for moderate-heavy precipitation, i.e.,

25–50mm (6 h)21, with smaller biases for very light and ex-

tremely heavy rates. In spite of the low-frequency bias,

HRRRE-SPP FSS values (radius5 40 km) are notably larger

(better) than HREFv2 at hours 0–6 for all precipitation

thresholds, but are decidedly worse at hours 6–12 and 18–24.

Short-range (0–6-h) HREFv2 and longer range (6–12, 18–24-h)

HRRRE-SPP probabilistic forecasts of $0.25mm (6 h)21

(Fig. 8c) exhibit near-perfect reliability, but substantial overcon-

fidence is noted in 0–6-h HRRRE-SPP, and 6–12 and 18–24-h

HREFv2 forecasts. Reliability of 2.5 and 25mm (6h)21 forecasts

(Figs. 8d,e) is similar and slightly overconfident for both ensem-

bles, except for the significant overconfidence noted in 0–6-h

HRRRE-SPP forecasts. HRRRE-SPP performance overall lags

FIG. 7. Ensemble maximum forecasts of 24-h peak 2–5-km updraft helicities (color fill) and probability of the 24-h maximum 2–5-km

updraft helicity exceeding 75m2 s22 in a 40-km radius (contours) from the (a),(c) HREFv2; (b) HRRRE-SPP; and (d) HRRRE-CTRL

ensembles at 1200 UTC 23 May 2019. Tornado (inverted red triangles) and severe hail reports (filled green circles) are also shown. This

figure was created from plots available on the HWT-SE website (https://hwt.nssl.noaa.gov/sfe_viewer/2019/model_comparisons/).
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slightly behind that of HREFv2, although for several metrics and

thresholds, scores from the two systems are quite similar.

Last, updraft helicity (UH) forecasts were evaluated from

both ensembles over the 5 June–31 August 2019 frozen con-

figuration period. Due to data availability over the period of

interest, only 0–12-h maximum UH forecasts were evaluated.

The HREFv2 and HRRRE-SPP 0–12-h probabilistic forecasts

of UH $ 75m2 s22 exhibited similar reliability, with the

HRRRE-SPP ensemble producing only slightly less confident

forecasts thanHREFv2 (Fig. 9a). High probabilities weremore

likely to occur in HREFv2 than in HRRRE-SPP (Fig. 9b).

For a given probability, however, forecasts from both systems

had a similar likelihood of being associated with an observed

event, given the minor differences in reliability.

6. Summary and future work

The current implementation of SPP in HRRRE represents a

proof-of-concept for designing a single-dynamic-core, single-

physics ensemble. Retrospective experiments demonstrate its

ability to increase the ensemble spread in near-term (0–18 h)

HRRREpredictions of sensible weather in the summer season,

including air temperature, dewpoint temperature, and wind

speed near the surface (Fig. 2). These experiments also demon-

strate that SPP increases the reliability of near-term HRRRE

precipitation forecasts (Figs. 3c–e), but exacerbates a preexisting

low-frequency bias in the prediction of heavy (.1.0 in.) rainfall

in HRRRE (Fig. 3a). Surrogate severe weather forecasts from

HRRRE-SPP have similar reliability (Fig. 4a) to those from

HRRRE-CTRL, but the greater spread in HRRRE-SPP leads

to fewer higher-confidence (.30%) predictions of severe

weather (Fig. 4b).

Real-time experiments during and after HWT-SE 2019 also

provide evidence that SPP can be used to obtain reliable

forecasts of heavy rainfall (Figs. 8c–e) and severe weather

(Fig. 9a). However, they also suggest that HRRRE-SPP, as

currently configured, is less likely to produce higher-confidence

surrogate severe weather forecasts based on updraft helicity

than the HREFv2 operational system (Fig. 9b). Feedback from

HWT-SE forecasters indicates that the sharpness of the resulting

ensemble forecast must be considered before stochastic tech-

niques, including SPP, can achieve operational success. It re-

mains possible that these goals can be achieved by further

refining the particular parameters and variables perturbed using

SPP and the magnitudes and decorrelation scales of those per-

turbations (Table 1 and the appendix), but more work is needed

to make this determination. It also would be worthwhile to ex-

plore how statistical postprocessing could be applied to ensem-

ble output, including output from HRRRE-SPP, to produce

more useful guidance for operations. In general, future ensem-

ble development and/or postprocessing will need to target an

optimal combination of near-neutral frequency biases and ap-

propriate spread, i.e., a system comprised of members that, over

many forecasts, accurately represent the occurrence and areal

coverage of significant weather, and differ from one another

such that forecast probability density functions 1) are sharper

FIG. 8. Verification of HRRRE-SPP (solid) and HREFv2 (dashed) probabilistic quantitative precipitation forecasts relative to NCEP

Stage-IV quantitative precipitation estimates at lead times of 0–6, 6–12, and 18–24 h (blue, green, and red, respectively), consisting of

(a) frequency bias (forecast/analysis), (b) fractions skill score with radius 5 40 km, and reliability diagrams and forecast histograms for

thresholds of (c) 0.25, (d) 2.5, and (e) 25mm (6 h)21.
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than long-term climatological distributions, and 2) result in

forecast exceedance probabilities consistent with observed rel-

ative frequencies.
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APPENDIX

More Details about HRRRE-SPP Design

The boundary layer scheme in HRRRE is the Mellor–

Yamada–Nakanishi–Niino eddy diffusivity/mass-flux scheme

(MYNN-EDMF; Nakanishi and Niino 2006; Nakanishi and

Niino 2009; Olson et al. 2019). Within the boundary layer

scheme, the eddy diffusivity KH and eddy viscosity KM were

perturbed. These diagnostic variables govern the local mixing

of all momentum and scalar variables in both stable and con-

vective conditions. We chose to perturb KH and KM instead of

the mixing lengths because the numerical stability constraints

in the Mellor–Yamada framework may impose additional

limits on the mixing lengths, voiding some fraction of the ap-

plied perturbations. The lateral entrainment rates of buoyant

plumes in the mass-flux portion of the MYNN-EDMF were

also perturbed, allowing the nonlocal transport in convective

conditions to vary in strength stochastically. This allows plumes

to penetrate higher or terminate lower in the atmosphere,

which can affect both the strength of the mixing and the areal

coverage of simulated shallow-cumulus clouds. Last, taking

advantage of the nonconvective components of the subgrid-

scale clouds within the MYNN-EDMF and their interaction

with the radiation scheme, the subgrid-cloud fractions and

mixing ratios were indirectly perturbed by a direct perturba-

tion of the background water vapor specific humidity qy. Note

that this perturbation to qywas isolated to the calculation of the

subgrid-scale cloud macrophysical properties only and did not

impact the magnitude of qy (or its use) in any other component

of the model.

The interaction between the subgrid-scale clouds and the

radiation is dependent upon the estimated cloud water and ice

effective radii, rec and rei, respectively, which are specified in

the RRTMG radiation scheme. Smaller (larger) effective radii

produce brighter (darker) clouds. The rec is specified as a

constant over land and ocean according to Turner et al. (2007),

while the rei are time-varying diagnostics that are specified

according toMishra et al. (2014). Both rec and rei are perturbed

with the same spatial and temporal scales as those used in the

MYNN-EDMF for perturbing the background qy, but the sign

of the perturbation is opposite with respect to the background

qy perturbations to avoid canceling out the cloud radiative

impacts.

The surface exchange coefficients within theMYNN surface

layer scheme are indirectly affected by the direct perturbation

of aerodynamic, thermal, and moisture roughness lengths.

Over land, the aerodynamic roughness lengths z0 are speci-

fied constants according to the prescribed land use categories.

FIG. 9. Verification of 0–12-h HRRRE-SPP (teal) and HREFv2

(red) updraft helicity forecasts against local storm reports, con-

sisting of the (a) reliability diagram and (b) forecast histogram for

the 75m2 s22 updraft helicity threshold.
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The thermal and moisture roughness lengths, zt and zq, re-

spectively, are specified according to Zilitinkevich (1995) and

vary according to the Reynolds number and z0. Over water, z0,

zt, and zq are time-varying diagnostics specified according to

the COARE 3.0 bulk surface flux algorithm (Fairall et al.

2003). Over both land and water, the constant values of z0
(over land), the time-varying values of z0 (over water), zt, and

zq are perturbed with the same spatial and temporal scales as

those used in the MYNN-EDMF and are perturbed with the

same sign, so increased (decreased) land-atmosphere coupling

is concurrent with increased (decreased) local and nonlocal

diffusion in the boundary layer.

The gravity wave drag (GWD) scheme employed in the

HRRR uses a topographic form drag (TOFD; Beljaars et al.

2004) and a small-scale gravity wave drag (SSGWD; Steeneveld

et al. 2008). Both of these components can be applied down to

grid spacing of about 1 km, unlike traditional large-scale GWD

schemes, which are meant to represent the impacts of gravity

waves launched by terrain wavelengths of order 10–100km. The

TOFD can be active in both stable and unstable conditions,

while the SSGWD is only active in the stable boundary layer;

thus, both provide an opportunity for stochastic perturbations to

impact the stable boundary layer. A supplemental impact of

stochastic perturbations is needed to help with ensemble spread

in stable conditions because the perturbations implemented in

the MYNN-EDMF scheme become much less effective as tur-

bulent mixing diminishes in stable conditions. The behavior of

both the TOFD and SSGWD is dependent upon the estimated

standard deviation of the subgrid-scale terrain variations sH,

which is a two-dimensional fixed parameter valid for each sur-

face grid cell. The quantity sH is perturbed with the same spatial

and temporal scales as used in the MYNN surface layer scheme

(for perturbing z0) and is perturbed with the same sign as used

for the z0 perturbation, so positive (negative) perturbations act

to decelerate (accelerate) the low-level winds.

Including stochastic perturbations to the horizontal diffu-

sion is another way to achieve ensemble forecast spread in both

stable and unstable conditions. The Smagorinsky horizontal

diffusion scheme (Smagorinsky 1963, 1993), employed in the

HRRR, uses a constant known as the Smagorinsky constant cs,

which sets the horizontal length scale proportional to the

horizontal grid spacing. The impact of this perturbation is

typically secondary with respect to most other perturbations,

but it has the ability to impact the strength of resolved- (storm-)

scale updrafts and low-level winds in complex terrain. The

default value of cs is set to 0.25. Values of cs that deviate too far

from 0.25 were found to cause infrequent numerical instabil-

ities, so asymmetric (positive/negative) perturbations were

applied to stay within numerically stable bounds (see Table 1).

The perturbations to cs used the same spatial and temporal

scales as those used in the MYNN-EDMF and also use the

same sign, so increased (decreased) horizontal diffusion is

concurrent with increased (decreased) vertical diffusion.

Stochastic perturbations were also added to fields in the

RUCLSM (Smirnova et al. 2016), which ultimately provide the

lower boundary conditions to drive the boundary layer scheme

and resolved-scale convection. Perturbations were added to

the surface emissivity, albedo, and vegetation fraction, which

are all constant two-dimensional surface fields, so long as the

surface characteristics do not change during the forecast (i.e.,

when snow cover accumulates or melts away). The perturba-

tions to all three fields were assigned an opposite sign to the

diffusion (KH and KM) and roughness length perturbations, so

larger surface sensible heat fluxes would be concurrent with

larger diffusion and land-atmosphere coupling. Perturbations

were also added to the soil moisture, but these perturbations

were only applied at the first model time step, since further

applying perturbations to a prognostic state variable during the

forecast would violate conservation of moisture. Furthermore,

no attempt was made to correlate the soil-moisture perturba-

tions with other perturbations, since the soil-moisture pertur-

bations did not coevolve during the model forecast.

The perturbations added to the Thompson aerosol-aware

microphysics scheme include the intercept parameter for the

graupel size distribution, the shape parameter for the cloud

droplet size distribution, the concentration of activated ice

nuclei (IN), and the vertical velocity used to compute the

concentration of activated cloud condensation nuclei (CCN).

Because the microphysical processes being perturbed are

largely independent from the processes being perturbed in the

land surface and planetary boundary layer parameterizations,

no attempt was made to study the impact of correlating or

anticorrelating these perturbations.
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